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Abstract

The physics of dispersion in fixed beds of randomly-placed particles are considered against the background of

experimental and theoretical work published during the past several years. The general equations for the reactor are

shown as developments of the Central Limit Theorem, that may be presented as a second order equation defined by

two-point boundary conditions. When dispersion is convective it is shown that the boundary conditions may be

transformed into initial conditions and a numerical solution, if required, may be obtained without iteration. Illustra-

tions of the method are given for non-linear processes including single and non-isothermal reactions. The application of

the method to multiple reactions is described.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

When fluid flows through a conduit packed with par-

ticles, the constituent molecules are spread about the mean

flow by molecular diffusion, and by velocity profiling due

to the stagnancy of fluid in contact with the solid surfaces

of particles and the walls of the conduit. The separate

actions of axial spreading are well understood in the

simple configuration of an empty tube. For a round tube,

axial spreading due to the velocity profile is such that a

planar injection of tracer across the tube extends linearly

with time in parabolic form in the direction of flow, while

for molecular diffusion spreading about the initial position

follows the second order diffusion equation.

The phenomenon of axial spreading of an injection of

tracer across a cross section of a round tube was studied

by Taylor [31], who distinguished axial spreading under

velocity-dominated conditions when the effect of molec-

ular diffusion was insignificant because of the short

contact time, and for longer contact times when molec-

ular diffusion was significant. He showed that for suffi-

ciently long contact times molecular diffusion smoothed

out radial variations in concentration, and a planar

injection of tracer material could be observed as a band

travelling down the tube at the mean fluid velocity but
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spreading axially about the mean according to the second

order diffusion equation. The axial spreading was char-

acterised by an effective �diffusion’ coefficient that was

dependent upon both the molecular diffusivity and the

mean fluid velocity; the coefficient is usually referred to

as the coefficient of dispersion.

Taylor’s work was extended by Aris [1], who added

the effect of molecular diffusion in the axial direction,

and obtained expressions for the dispersion coefficient in

other shapes of conduit. In both studies it was found

that axial spreading could be described by the second

order diffusion equation only when the contact times

were long, while for short contact times axial spreading

was determined by velocity profile.

Although these studies are helpful in visualising the

mechanisms of dispersion, the geometry of a bed ran-

domly-packed with particles is much more complex, and

it is possible that there may be mechanisms of dispersion

in addition to those identified for empty conduits. Dis-

persion of a tracer component in flow through a ran-

domly-packed fixed bed may in theory be studied from

the equations of motion and conservation for fluid

flowing through the arrangement of particles in the bed.

Because the boundary conditions are specified on the

surfaces of randomly-placed particles, the solution of the
ed.



Nomenclature

Ai transformed molar flux of component,

kmoles/s

c total molar concentration, kmoles/m3

dp particle equivalent diameter, m

Dx dispersion coefficient, m2/s

f rate function

g defined by Eq. (19)

G gas constant, barm3/kmolK

k reaction velocity constant, kmol/m3 s

k0 reaction velocity constant, kmol/m3 s

k1 reaction velocity constant, kmol/m3 s

k2 reaction velocity constant, kmol/m3 s

n exponent

p pressure, bar

t time, s

T temperature, K
U velocity, m/s

w y � yeq
x distance, m
xe reactor exit

y concentration of key component

yi concentration of ith component

yti defined by Eq. (12)

ye concentration in reactor exit section

yeq concentration at equilibrium

y0 concentration in reactor entry section

z derivative of y with respect to x
k defined by Eq. (30)

mi,mij stoichiometric coefficient

q mass density of fluid kg/m3

Subscripts

eq equilibrium

i component
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equations is required for a randomised distribution of

geometries to be formulated, a task that is complicated

by the occurrence of flow instabilities and consequent

perturbations. This computational task is so complex

that it has not been attempted in this form, and even the

most ambitious simulations are restricted to simple

regular geometries and steady laminar flow. Moreover

simulations based upon regular geometries lack an

important stochastic element contributed by the random

arrangement of particles and therefore may not be a

reliable basis for predictions of reactor behaviour.

The basis for many analyses of random processes of

Markovian type i.e. without a memory effect, is the

Central Limit Theorem that describes an asymptotic

condition attained by a wide range of stochastic pro-

cesses [26]; a proof of the theorem together with appli-

cations to statistical mechanics has been given by

Khinchin [20]. The theorem is concerned with the

asymptotic form of the sum of terms of independent

random quantities.

Let the random quantities be fluid particle displace-

ments generated by molecular diffusion and by convec-

tion in flow fields dominated by the random placement

of solid-phase catalyst particles or other solids. If gix and
r2
ix are the first and second moments of the probability

densities of fluid particle displacements in the ith time

interval, the sum Fxn of n displacements has the form,

y ¼ Fxn ¼
1

2ðpDxtÞ1=2
exp

"
� ðx� UxtÞ2

4Dxt

#
þO

1

n

� �
;

Dxt ¼
1

2

Xn
i¼1

r2
ix;Uxt ¼

Xn
i¼1

gix

ð1Þ
where Ux is the mean velocity and Dx is the dispersion

coefficient. The sum Fxn for large n may be identified as a

concentration y of a molecular component with a multitude

of molecular displacements mapping out the same space.

The constituent stochastic process may be complex

and not amenable to an analytical or even a numerical

description, but the asymptotic form is independent of

the detailed process. The asymptote of the expression for

y above satisfies the partial differential equation,

oy
ot

¼ Dx
o2y
ox2

� Ux
oy
ox

ð2Þ

The rate of approach to the asymptote depends upon

the process. Thus Taylor estimated that Eq. (2) is appli-

cable for dispersion in round tubes providing that

L=Ux >> a2=ð3:82DÞ. In experiment Gunn and Pryce

[13] found that the asymptotic condition was not at-

tained during gas flow through a 300 mm length of 6 mm

diameter spheres in a regular cubic array, evidently not

long enough to approach the asymptote. However the

limiting condition was sensibly attained during gas flow

through a length of 15 mm of 6 mm diameter spheres in

random placement, a length that is often small com-

pared to a processing unit.

Fig. 1 illustrates some experimental measurements

for axial dispersion in fixed beds of impermeable

spheres; both gas-phase and liquid-phase measurements

are shown, selected representatives of a large number of

experimental studies Gunn [10,11]. The experimental

measurements of Gunn and Pryce [13] and Edwards and

Richardson [9] for the mixing of argon and air in fixed

beds of spheres for which the Schmidt group is 0.77 are

shown as the dependence of the Peclet group upon the

product of the Schmidt group and the particle Reynolds



Fig. 1. Experimental data on axial dispersion in fixed beds and

comparison with some theories.
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number for flow in the bed. At small values of ReSc the

gas-phase measurements are closely distributed about a

line of gradient + 1, corresponding to a dispersion coef-

ficient directly proportional to the molecular diffusivity,

while above this value the variation of the Peclet group

is small, rising to a gradual maximum and falling to

approach a value of 2 as the Reynolds number increases

to 1000. In this region the dispersion coefficient is

broadly proportional to the fluid velocity.

The selected experimental measurements for axial

dispersion in the liquid phase are those of Vermeulen

and Jacques [34] and Miller and King [24]. A maximum

in the Peclet group would be expected for liquid-phase

measurements but because of experimental difficulties

there are no reliable measurements at low velocities and

only the region of convective dispersion for which

ReSc > 1, is well-defined [12].

Mixing in fixed beds of randomised arrays of parti-

cles has been defined in terms of mixing in stages [22], by

transverse exchange between stages [7], in terms of

Taylor dispersion in tubes [27,32], in terms of a sto-

chastic view of fluid-mechanical dispersion Gunn [11], in

terms of Taylor dispersion in regular particle arrays [28];

and in terms of particle interactions and Brinkman’s

theory of flow through arrays of particles [21]. Models of

the dispersion process may be compared with experi-

ment and if the comparison between experiment and

theory is close then it is plausible to assume that the

physics of the model are likely to portray aspects of the

real dispersion process.

Koch and Brady considered the permeability of a

dilute concentration of spheres following Maxwell and

Jeffrey while using Brinkman’s equation’s to introduce

the effect of convection. The figure shows the predictions

of the theory when the spheres are impermeable and

ReSc > 1; the equation has been taken from Table 1 of

their 1985 paper. From their analysis they found that the
ratio of the dispersion coefficient to the molecular dif-

fusivity was a function of the product ReSc only, cor-

responding to the Peclet group as a function of ReSc
only. Although the line showing their equation touches

the liquid-phase measurements over a small range it is

clear that the experimental measurements show that the

Peclet group is a function of both Reynolds and Schmidt

groups as Pe ¼ f ðRe; ScÞ and not Pe ¼ f ðReSc). The

same functional limitation applies to applications of the

Taylor–Aris analysis including that of Shapiro and

Brenner [28] where the difference between experiment

and theory can be very large [29].

Saffman’s model of a random network of capillary

tubes showed variations from the experimental tensor

attributed by him to inaccuracies in the choice of the

angular density distribution of the randomised capillary

network that he analysed. However some of the quali-

tative features shown in Fig. 1 were portrayed in his

analysis [19].

The predictions of the theory of dispersion in fixed

beds due to Gunn [11] are illustrated in the graph for

values of the Schmidt group of 0.77 and 800. The theory

is founded upon a representation of the mechanics of

fluid flow through beds of particles as a probability of

axial displacement due to regions of differing velocity

with the dependence of the probability density upon the

Reynolds number of flow determined from experiments

in which there is no effect of molecular diffusion. Axial

dispersion was analysed as transport between regions of

dynamic and slowly moving fluid in which transverse

transport occurred by molecular diffusion with axial

displacement a result of velocity transport and molecu-

lar diffusion. There is good agreement between the the-

ory and experiment for both gas and liquid-phase

dispersion although the absence of reliable measure-

ments at low liquid velocities precludes testing the the-

ory in that region.

Eq. (2) applies when, for example, a tracer compo-

nent under consideration is conserved. If the component

is consumed by chemical reaction at a rate f ðyÞ, then

oy
ot

¼ Dx
o2y
ox2

� Ux
oy
ox

� f ðyÞ ð3Þ

Eq. (3) is the basic equation for the longitudinal fixed-

bed reactor with axial dispersion.

The increased difficulty of estimating transport coef-

ficients in fixed beds promoting chemical reaction, is the

main reason for the practice of estimating dispersion and

other transport coefficients in non-reactive experiments

where the number of unknown parameters is smaller and

parameter interactions in the estimation process are less

important. As a consequence the question of whether

dispersion or other transport parameters are changed by

chemical reaction in randomly packed beds has been

raised on a number of occasions.
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It has been shown by Shapiro and Brenner [28], that

when chemical reaction is promoted at the walls of a

straight tube or at the surfaces of a regular array of

particles under conditions of laminar flow, dispersion

coefficients measured under reactive conditions differ

from those estimated in the absence of chemical reac-

tion. Thus when a first order reaction is promoted at the

surfaces of a straight tube and fluid is in laminar flow,

fluid contiguous to the solid surface is denuded of

reactant in the region that is also characterised by low

fluid velocity. If convection is significant, the analysis

shows that the dispersion coefficient is smaller under

conditions of heterogeneous reaction because axial

spreading has been reduced in the low velocity region.

On the other hand if chemical reaction is homogeneous,

dispersion coefficients estimated under reactive and non-

reactive conditions are the same because chemical

reaction takes place in the same distributed space as the

dispersion of reactant.

Gunn and Vortmeyer [18] considered dispersion in

reactive and non-reactive beds on the basis of the

experimentally established validity of the second order

dispersion equation for the measurement of axial dis-

persion in radially uniform beds. By means of a trans-

formation they showed that a study of Aris and

Amundson [3] on the equivalence between the cell and

dispersion models under unreactive conditions would

also hold under reactive conditions. Their paper was

subsequently criticised by Shapiro and Brenner, and

Stewart on the grounds that it had been shown by

Brenner and coworkers that the reactive and unreactive

dispersion coefficients were different under some condi-

tions, and that the proof offered by Gunn and Vort-

meyer was based upon an intrinsic assumption that the

coefficients were the same. In the fairly lengthy discus-

sion [29] it emerged that the mixing of fluids in flow

through regular arrays of particles and flow through

random arrangements exhibited fundamental differences

and therefore findings from numerical simulations based

on regular arrays were unlikely to apply to randomly

packed beds. The treatment of reactive and unreactive

coefficients offered by Gunn and Vortmeyer was based

upon the established experimental validity of the second

order equation for dispersion without chemical reaction

but not just upon experiments on inactive particles.

Intraparticle phenomena are linked to the equations

for the fixed bed. Under conditions of heterogeneous

reaction catalysed by porous particles, the surfaces of

the particles act as a sink for the reactant; under con-

ditions of transient mass transfer during flow through a

bed of porous particles without reaction the surfaces of

the particles act as a sink when the concentration of

diffusant outside the particle is greater than that inside.

In both circumstances the flux between the bed and the

particles is driven by concentration gradients at the

surfaces of the particles. An analogous condition is
found for transient heat transfer during flow through

beds of particles. Because the pattern of diffusive inter-

action between particles and fluid is the same in reactive

and active beds it is expected that the dispersion coeffi-

cients would be the same because of similarity in the

constituent diffusive and dispersive processes. Experi-

ments with active particles including validation studies

have been carried out by Gunn and England [14], Gunn

and de Souza [17], Bashi and Gunn [4], Gunn and

Misbah [15] and Gunn and Misbah [16].

In 1962 Hiby published an influential study in which

he described a dye tracer experiment in a randomly

packed bed that showed there was no diffusion of dye

against the flow when convection was dominant. Al-

though his observation was for a randomly packed bed

there has been a general interest in mixing processes

that did not permit transport against the direction of

flow. Eqs. (2) and (3) have been used as descriptive

tools for a variety of chemical and physical processes

but it has been shown by Sundaresan et al. [30],

Westerterp et al. [35,36] and Kronberg et al. [23] that if

the process precludes back-mixing and the development

of the asymptotic form of the Central Limit Theorem is

slow, a system of first order hyperbolic equations de-

fined by initial conditions can give a better simulation

once the process has been accurately characterised by

establishing the parameters in the differential equations.

The spreading of tracer in laminar flow through a

round tube has been taken as a common example in

these studies.

The rapid development of the asymptotic form has

been experimentally-established for the randomly-

packed fixed-bed reactor so that when back-mixing is

excluded the reactor may be accurately and properly

described by Eq. (3) and its variants when dispersion is

convective. The two-point boundary conditions are not

a difficulty in describing transient processes as the initial

conditions are defined, but for the steady state there is a

major difficulty when the processes are non-linear.
2. The differential equations for the fixed-bed reactor

The subject of boundary conditions for fixed-bed

reactors has been discussed at length elsewhere, but two

proposed sets contain the essential elements.

The boundary conditions proposed by Danckwerts

[6] are

N ¼ Uxy � Dx
dy
dx

at the reactor inlet ð4Þ

dy
dx

¼ 0 at the reactor outlet ð5Þ

N is the rate of feed to the reactor. With these conditions

a change in reactor length, for example, will change the
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concentration profile upstream as back diffusion is

possible.

The second set is that of Gunn [10,11] who suggested

that the Danckwerts’ conditions applied only if molec-

ular diffusion is dominant, and when convection is

dominant he proposed that the inlet condition should be

retained but the downstream condition should be that of

asymptotic equilibrium,

Ltðyi ! yi eqÞ f ðyiÞ½ � ¼ 0; as x ! 1 ð6Þ

Condition (6) ensures that downstream conditions

are not propagated upstream so preventing back-mix-

ing, and Eq. (3) is now defined by two-point boundary

conditions of input flux and downstream equilibrium.

This downstream condition was tested statistically by

Dixon et al. [8] in describing two-dimensional packed-

tube heat transfer experiments, and was shown to give a

significantly better fit than that obtained with zero gra-

dient at the outlet.

In practice the form of Eq. (3) is often overlysimple.

There are important variations in velocity and disper-

sion coefficient due to changes in pressure, temperature

and to volume generation on chemical reaction. In the

case of a single reaction with concentration and tem-

perature changes restricted to one-dimension, an ap-

propiate generalisation of the equation might be,

d

dx
cDx

dyi
dx

� �� �
� d

dx
Uxcyið Þ � f ðyiÞ ¼ c

oyi
ot

;

i ¼ 1; 2; . . . ; n ð7Þ

where f ðyiÞ is the rate of consumption of component i in
the reaction and the molar volume c is related to the

properties of state of the system by c ¼ p=GTzc. The

implied dependences of molar velocity and dispersion

coefficient in Eq. (7) reflect the common circumstances

in fixed-bed reactors when molar quantities are not

usually conserved in the chemical reaction, and the

reactors are often not isothermal. The form of the

transport terms in Eq. (7) follows that suggested for

molecular diffusion [37], with f ðyiÞ the rate of reaction in

unit volume of reactor for component i. Although the

mass flux may be affected in addition by pressure diffu-

sion, surface diffusion, and by the temperature gradient

through the Soret effect coupled with the Dufour effect,

these effects are generally taken to be of second order in

comparison with molecular diffusion. It would be

therefore expected that the relative importance would be

even smaller in a practical reactor where mixing by

molecular diffusion is increased by convection.

The units of composition are often the molar content

in unit volume in theoretical studies, but in practice the

units are usually partial pressures or mole fractions for

gas-phase reactions and mole fractions for liquid-phase

reactions. Representation of compositions in terms of

molar content in unit volume is theoretically unsatis-
factory in non-isothermal reactors and for rates of

transport in diffusive or dispersive processes partial

pressures or mole fractions are preferred.

In the convection-dominated regime, dispersion is

principally due to the cumulative effect of small-scale

velocity distributions, and as indicated in Fig. 1, the

sensitivity of the Peclet group in a given phase to the

Reynolds group and to the product ReSc is small. Thus

changes in the velocity and dispersion parameters cancel

out in the Peclet group, Uxdp=Dx.

On substitution of the Peclet group into Eq. (7),

o

ox
ðUxcÞ

d
Pe

oyi
ox

��
� yi

��
� mir ¼ c

oyi
ot

;

i ¼ 1; 2; . . . ; n ð8Þ

Eq. (8) applies to non-linear, non-isothermal, and non-

isobaric reaction. When the kinetic rate is non-linear Eq.

(8) is also non-linear and a numerical solution is re-

quired to take the concentration profiles forward in time

from the initial conditions.

On summing Eq. (8) over the n components,

d

dx
Uxcð Þ þ

X
i

mir ¼ 0 ð9Þ

The boundary conditions for convective dispersion when

ReSc > 1 are,

yi0 ¼ yi �
d
Pe

oyi
ox

at the reactor inlet;

i ¼ 1; 2; 3; . . . ; n ð10Þ

and,

yie ¼ yi �
d
Pe

oyi
ox

at the reactor outlet;

i ¼ 1; 2; 3; . . . ; n ð11Þ

The boundary conditions at the reactor inlet have been

chosen for consistency with the material balance since as

evident from the discussion on Eq. (7) the mixing pro-

cess does not lead to a unique set of initial conditions at

the reactor inlet. Boundary condition (10) imposes a

component mass flow from a non-reactive environment

into a reactive one where yi0 is the concentration of

component i in the reactor entry, while (11) is the

statement of mass conservation for flow into the unre-

active exit where the concentration is yie. Eq. (11) spec-
ifies the product of the reactor.

Some simplification of the set of Eq. (8) is possible.

Let i ¼ 1 be designated as the key component. From Eq.

(8) defined for components i ¼ 2; 3; . . . subtract a mul-

tiple mi=m1 of Eq. (8) for the key component to give,

o

ox
ðUxcÞ

d
Pe

oðyi � miy1=m1Þ
ox

��
� ðyi � miy1=m1Þ

��

¼ c
oðyi � miy1=m1Þ

ot
; i ¼ 2; 3; . . . ; n
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or

o

ox
ðUxcÞ

d
Pe

oyti
ox

��
� yti

��
¼ c

oyti
ot

;

yti ¼ yi � miy1=m1; i ¼ 2; 3; . . . ; n ð12Þ

with

yti0 ¼ yti �
d
Pe

oyti
ox

at the reactor inlet;

i ¼ 2; 3; . . . ; n; and ð13Þ

ytie ¼ yti �
d
Pe

oyti
ox

at the reactor outlet;

i ¼ 2; 3; . . . ; n ð14Þ

The system specification is completed by the initial

conditions of concentration for each component, and

the bed temperature and pressure distribution. That

Eqs. (10) and (11) satisfy the requirement of no back-

mixing may be seen when an extension of the reactor is

introduced at the exit. When introduced, the boundary

conditions will be (10) and (11) at the unchanged inlet

and the outlet of the extension. At the interface between

original bed and extension the boundary condition will

be,
yi

�
� d
Pe

oyi
ox

�
upstream

¼ yi

�
� d
Pe

oyi
ox

�
downstream

ð15Þ
In other words the boundary conditions for the up-

stream section are unchanged and the concentration

distribution may be obtained independently of the

downstream section. This is the requirement for no

back-mixing. Further since the upstream and down-

stream sections are homogeneous within the reactor, the

concentration and gradient are continuous over the

interface.

For transient systems the initial concentrations are

specified, and when the temperature distribution is

determined, the solution to Eq. (8) subject to (9) and

constrained by boundary conditions, is well-posed and

can be carried forward in time. If the temperature dis-

tribution has to satisfy a thermal balance, the differential

equations including the thermal balance carry forward

the solution in time subject to (10) and (11) and

boundary conditions arising from the thermal system.

Although the differential equations are well-posed for

transient systems, boundary conditions (10) and (11)

create difficulties at the steady state because neither

condition is fully known at the outset. Of course the

steady state may be obtained from the transient equa-

tions by integrating forward in time from a specified

initial condition but a less time-consuming procedure is

desirable.
3. Fixed-bed reactors at the steady state when dispersion

is dominated by convection

It may be observed that the usual manner of for-

mulating kinetic rate equations is to represent kinetic

data from a microscale or pilot scale reactor by means of

an empirical expression that will hold over the range of

conditions of the experimental investigation. For a

homogeneous reaction the form of the kinetic rate

equation represents the intrinsic kinetics unless consid-

erations of micro-mixing are introduced. For a hetero-

geneous reaction catalysed by solid catalyst particles, the

rate expression f ðyiÞ is an effective rate of consumption

in unit reactor volume; the mass conservation and any

associated energy equation constitute the equations of a

one-phase dispersion model. Alternatively f ðyiÞ may be

obtained from the solution to the partial differential

equation or equations that describe reaction and heat

and mass transport within the catalyst particle when the

equations constitute a two-phase dispersion model.

There are possibilities of complex transitions in tem-

perature and concentration within the particles since it is

known that the equations for intraparticle concentration

and temperature can admit multiple solutions at the

steady state some of which may be unstable (see for

example [2], for a discussion of this aspect).

It will often be considered essential that the rate

expression will extrapolate in a thermodynamically-

consistent manner to give zero rate at equilibrium. Even

though kinetic expressions derived from small-scale

experiments may be pseudo-first order, (see for example

[5]), it is desirable that rate expressions should be ther-

modynamically consistent when used in chemical reactor

analysis. This consideration applies both to effective rate

expressions and to the rate expressions employed in the

intraparticle equations.

The boundary conditions transformed for convective

dispersion at the steady state, Eq. (8), includes the effect

of a change in the number of moles on reaction. For the

moment this effect is excluded and Eq. (8) at the steady

state is reduced to (16),

dp
Pe

d2y
dx2

� dy
dx

� f ðyÞ
Uxc

¼ 0 ð16Þ

where f ðyÞ is a non-linear kinetic rate expression.

To satisfy the requirement of thermodynamic con-

sistency we require that,

Ltðy ! yeqÞ f ðyÞ½ � ¼ 0 ð17Þ

where yeq is the value of y attained at equilibrium. Thus

for a reaction of order n f ðyÞ may be,

f ðyÞ ¼ kyn � kyneq ð18Þ

When dispersion is convection-dominated, the disper-

sion coefficients are effectively the same for all species in
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single-phase flow [12]. Upstream conditions in the

reactor may be perturbed from a downstream change

only if transport against the flow, i.e.back-mixing, is

significant. In the regime of convection-dominated dis-

persion back-mixing is insignificant and the reactor may

be extended from the exit without affecting distributions

of composition and temperature within the reactor. The

condition of equilibrium may be approached provided

that within the reactor and extension the general con-

ditions for existence and uniqueness of the solution are

satisfied.

Eq. (16) may be put in the form,

dy
dx

¼ z ð19Þ

dz
dx

¼ azþ bf ðyÞ; a ¼ Pe
dp

; b ¼ Pe
dpUxc

ð20Þ

The existence and uniqueness theorem for the system of

differential equations (19) and (20) states that within the

bounded domain of integration, provided that the right

hand sides are continuous and satisfy Lipschitz condi-

tions in f ðyÞ, y and z, that are also bounded within the

domain, then the system possesses one and only one

solution that satisfies the initial conditions for y and z. A
Lipschitz condition with respect to a function F ðxÞ
within an interval requires that the increments of the

function remain bounded within the interval [33]. Thus

there exists a positive constant A such that for any two

points x1, x2 within the interval of integration,

F ðx1Þj � F ðx2Þj6A x1j � x2j ð21Þ

For the purposes of analysis the reactor is extended from

the exit to approach the condition of equilibrium; the

extension is taken to be isothermal at least in the neigh-

bourhood of equilibrium even though the reactor may

not be. We consider the case when f ðyÞ is non-linear in y
and suppose that f ðyÞ may be expressed as a Taylor

series expansion in ðy � yeqÞ in the neighbourhood,

f ðyÞ ¼ f ðyeqÞ þ ðy � yeqÞ
df
dy

� �
y¼yeq

þOðy � yeqÞ2 ð22Þ

Since f ðyeqÞ is zero f ðyÞ will show a linear dependence

upon ðy � yeqÞ in the neighbourhood according to Eq.

(22) with,

df
dy

� �
y¼yeq

¼ g ¼ f ðyÞ
ðy � yeqÞ

þOðy � yeqÞ ð23Þ

and therefore on substituting Eq. (23) into (16) after

neglecting the residual,

dp
Pe

d2y
dx2

� dy
dx

� g
Uxc

y
�

� yeq
�
¼ 0 ð24Þ

On setting y � yeq to a new dependent variable w, the
differential equation in the neighbourhood region is,
dp
Pe

d2w
dx2

� dw
dx

� g
Uxc

w ¼ 0 ð25Þ

The general solution to Eq. (25) is,

w ¼ A expðk1ðx� x0ÞÞ þ B expðk2ðx� x0ÞÞ ð26Þ

where A and B are constants to be determined and the ks
are defined,

k1;2 ¼
Pe
2dp

1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4gdp

UxcPe

s !
ð27Þ

In view of the approach to the equilibrium condition

downstream, the term containing a positive exponent in

Eq. (26) is discarded giving the solution,

w ¼ w0 expðkðx� x0ÞÞ ð28Þ

and therefore,

dw
dx

¼ z ¼ kw ð29Þ

where k ¼ Pe
2dp

1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4gdp

UxcPe

� �s !
ð30Þ

Eq. (29) is a single-valued relationship between w and z
in the downstream extreme of the virtual extension of

the reactor. Within the same region the value of k is also

given by substituting for g from Eq. (23),

k ¼ Pe
2dp

1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4f ðyÞdp

ðy � yeqÞUxcPe

� �s !
ð31Þ

and the values of y and its derivative satisfy both the

linear equation (25) and the non-linear equation (16).

For a chosen value of y that is sufficiently close to the

equilibrium condition, the value of the spatial derivative

is given by Eq. (29). Boundary condition (6) is embedded

within this expression.

With initial values of w and z that are equivalent to

the boundary conditions (10) and (11) for the extended

reactor, numerical integration of Eq. (16) may be started

towards the reactor inlet with the initial value of y given

by,

y ¼ wþ yeq at x ¼ xe ð32Þ

and the initial value of the gradient given by,

dy
dx

¼ kðy � yeqÞ at x ¼ xe ð33Þ

where xe lies within the region of constant k corre-

sponding to the linear region given by Eq. (28). The

solution to (16) is continued away from the equilibrium

condition until y attains the value given by the set mass

flow at the reactor entrance shown in Eq. (34),
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y ¼
Uxy0 þ Dx

dy
dx

Ux
ð34Þ

that is boundary condition (10) at the beginning of the

reactor, when the integration is complete.

As both y and its gradient satisfy Lipschitz condi-

tions within the reactor, the mass flows of each com-

ponent within the reactor are continuous, increasing

from the reactor exit to the entrance for reactants, and

decreasing for products of the reactions. The integration

paths from the initial conditions (32) and (33) pass

through the composition and gradient values associated

with Eq. (34). The solution is valid from the neigh-

bourhood of equilibrium to the reactor entrance and

constitutes the locus on which all exit compositions lie.

Since Eq. (16) is valid within the reactor and exten-

sion and the setting of initial conditions equivalent to

the boundary conditions in the downstream extension is

valid in the absence of back-mixing, the solution map-

ped out by this procedure satisfies the conditions of the

existence and uniqueness theorem. The unique solution

has been obtained without iteration resulting from the

transformation of the two-point boundary problem to

one of the initial value type, corresponding to a con-

siderable reduction in the difficulty of computation. The

qualifying condition is that the value of xe, the virtual

reactor exit, lies within the region of convergence of the

non-linear function f ðyÞ and the linear terms of the

Taylor series expansion of f ðyÞ about the point y ¼ yeq.
The value of k given by Eq. (31) is constant within the

region of convergence so that the condition is easily

checked. There is no restriction on the position of any

practical reactor exit that may lie anywhere on the

composition-x curve as required by the desired reactor

performance; the position of the virtual exit within the

linear region of the rate equation is chosen solely to

obtain the initial conditions for the numerical integra-

tion of Eq. (16).

In this development there is no change in the number

of moles on reaction. A change in the number of moles

on reaction does not affect the form or the method of

obtaining the initial conditions, although the numerical

solution continued from the initial conditions is applied

to Eq. (8) rather than (16).

In practice some consideration of the form chosen for

f ðyÞ will be necessary, although the requirement that

f ðyÞ be expressible as a Taylor series expansion about

the equilibrium condition is not normally restrictive.

4. A simple steady-state example

It is not intended to carry out an exhaustive study

here but rather to give an example of the application to a

non-linear form of industrial importance, a reversible

reaction of fractional order. Eq. (18) with n ¼ 1=2 is the

chosen example set in a study intended to demonstrate
only the validity of the analysis, and not the effect of

system variables on concentration distributions. Thus

the Peclet group has been taken as 1, the velocity as 0.1

m/s and the particle diameter as 10 mm. In the kinetic

expression k0 ¼ 2 moles/m3s with y rendered dimen-

sionless by dividing by the inlet concentration of the key

component with the inlet concentration incorporated

into k0. The choice of Peclet group, velocity and particle

diameter will correspond to Reynolds numbers of the

order of 500 for liquid-phase systems and 50 for gas-

phase systems so that the product ReSc is greater than 1.

Dispersion is dominated by convection for these condi-

tions.

The set of Eqs. (19) and (20), has been integrated

using an explicit fourth order Runge–Kutta method [25]

from the initial conditions (32) and (33).

In many cases of practical interest the concentration

of the key component at the equilibrium condition is not

small; this circumstance is examined in Fig. 2 for square

root kinetics where yeq ¼ 0:3 and the kinetic expression

is,

f ðyÞ ¼ k0y1=2 � k0y1=2eq ;
df
dy

� �
eq

¼ g ¼ 1

2
k0

1

y1=2eq

ð35Þ

Eq. (16) is integrated from a condition close to equilib-

rium at y ¼ 0:3002 that is chosen as the initial value of y

with the associated gradient given by Eqs. (30) and (31).

The value of y is chosen to lie within the neighbourhood

of equilibrium so that the kinetic expression is accurately

represented by the linear term of the Taylor series. The

integration is carried out from this initial point until the

values of y and its spatial derivative satisfy the condition

set by Eq. (34) when the integration has been completed.

The completed concentration profile is the locus from

which possible reactor outlet concentrations may be

chosen.

The profile is the full solution to the second order Eq.

(16) shown by the solid line. There is a significant dis-

parity between the exponential form of the solution to

the linearised equation and the full solution in the

vicinity of the reactor entrance, but as may be observed

in Fig. 2a, a magnification of Fig. 2, the linearised and

the full solution converge in the vicinity of equilibrium.

To ensure that integration is started within the

downstream region in which the linear representation of

Eq. (25) is an accurate approximation to the non-linear

second order equation, the constancy of k was examined

fromEq. (31). The corresponding values of k are shown in
Fig. 2b illustrating the constancy of k near the equilib-

rium condition and showing that the starting point of the

numerical integration lies well within the linear region.

The axial length scale is set with reference to the

reactor inlet by a procedure that may be implemented

after the integration. An arbitrary value of x at the vir-

tual reactor outlet in the neighbourhood of equilibrium



Fig. 2. Concentration profiles obtained for convection-dominated dispersion and square root chemical reaction, k0 ¼ 2, yeq ¼ 0:3,

Pe ¼ 1. (a) Concentration profiles obtained for convection-dominated dispersion and square root chemical reaction showing con-

vergence near equilibrium, k0 ¼ 2, ye ¼ 0:3, Pe ¼ 1. (b) Dependence of lambda upon x for square root kinetics, Pe ¼ 1.

D.J. Gunn / International Journal of Heat and Mass Transfer 47 (2004) 2861–2875 2869
is chosen as the point xe. The integration is started from

this point using the initial conditions (32) and (33) and

the length scale is set by accumulating the length incre-

ments in the numerical integration. At the conclusion of

the numerical integration the value of x at the reactor

inlet is subtracted from the length scale to set the axis

with reference to the reactor inlet.

The additional path shown for reference in Fig. 2 is

the integral for the reactor without mixing correspond-

ing to the solution to the first order differential equation,

dy
dx

þ f ðyÞ
Uxc

¼ 0 ð36Þ

Fig. 2 show the distributions of the concentration of the

key component within the reactor from the entrance to

the virtual exit. Since the virtual exit is in the neigh-

bourhood of equilibrium there is no apparent jump in

concentration at the exit. In all cases the dimensionless

concentration of the key component in the entrance

section is y ¼ 1 since the conditions under which dis-

persion is observable are created by chemical reaction

and chemical reaction is taken not to occur in the

entrance section. Thus there is a discontinuity in con-

centration at the entrance described by the entrance
boundary condition Eq. (11), and in the computational

algorithm by incorporating Eq. (34).

For any practical choice of reactor exit a similar

discontinuity in concentration is manifest where condi-

tion (37) is reached:

ye ¼ y � Dx

Ux

dy
dx

� �
ð37Þ

Here y is the composition on the curve at the position

chosen as the real reactor exit, while ye is the concen-

tration in the exit section where the rate of reaction is

zero and therefore the concentration is constant. In

conditions of negative composition gradient the second

term on the right is positive so that there is a jump in

concentration from y to ye.
On the computational experience shown in the fig-

ures the transformation of the solution to Eq. (16) from

the boundary value definition of Eqs. (10) and (11) to

the equivalent initial conditions of Eqs. (32) and (33)

while selecting only the reactor region of interest, is

simple and straightforward giving a considerable

reduction in the complexity of computation compared to

the two-point boundary formulation.



Fig. 3. Concentration distribution of key component for square root reaction in reactor and entrance and exit sections.
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The discontinuities in concentration at the reactor

inlet and outlet mark the transition between idealised

reactor and flanking sections; in practice the inlet and

outlet of the reactor will not be idealised planes of zero

thickness and the changes in concentration will not be

abrupt.

The concentration distribution for square root

kinetics illustrated in Fig. 2 where the concentration at

the end of the reactor has been set at 0.34, has been

plotted to include the concentrations of the key com-

ponent in entrance and exit sections. This graph is

shown as Fig. 3. Changes in concentration occur at the

reactor entrance and exit with the exit change a rise from

y ¼ 0:34.
5. An approximate first order form

In the preceding development the full form of Eq.

(16), an equation of the second order has been solved

subject to the restriction of convection-dominated dis-

persion and in this mode Eq. (29) is the relationship

between y and its derivative at the reactor exit. It is a

condition for the solution that the reactor exit should be

within the radius of the linear representation of the rate

equation. If the exit does not meet this requirement the

reactor should be extended virtually to bring the virtual

exit into the linear region.

In the full solution to the second order Eq. (16), Eqs.

(29) and (30) define only the initial conditions; once the

initial conditions are established the integration of (16)

is continued by a numerical method. However Eq. (29) is

specified for the entire reactor length both real and vir-
tual raising the possibility of a non-linear first order

form as an approximation to Eq. (16).

The first order form and k are defined by Eq. (38) in

which the Taylor series coefficient g has been replaced by

f ðyÞ=ðy � yeqÞ.

dy
dx

¼ z ¼ kðy � yeqÞ;

k ¼ Pe
2d

1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4f ðyÞd

ðy � yeqÞUxcPe

� �s ! ð38Þ

There are formal difficulties in starting the integration

since the value of y at the reactor entrance is not known.
However if y is set to y0 at the start integration may be

continued, and the reactor entrance is found in the

course of computation when Eq. (34) is satisfied by the

calculated values of y and the gradient. It would be ex-

pected that equation should give an acceptably accurate

solution provided that the dependence of k upon x is

sufficiently small.

We note that in these methods yeq is a local value that

will differ from the downstream value when the reactor

is not isothermal for example.

To give some idea of the maximum errors that might

be developed by this procedure the non-linear first order

form has been solved for the entire reactor starting from

the entrance and the solution will be compared with the

solution to the second order equation as described for

the single reaction of half order kinetics. The approxi-

mate solution obtained by integration of Eq. (38) for

square root kinetics is compared with the solution to Eq.

(16) for square root kinetics with yeq ¼ 0:30 in Fig. 4. In

this example it is evident that agreement between the full



Fig. 4. Comparison of concentration profiles obtained from the first order approximation and the solution to the second order

equation.
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solution to Eq. (16) obtained by backward integration

and the solution to the approximate first order form Eq.

(38) obtained by forward integration, is close and in

practice may be of acceptable accuracy. The corre-

sponding integration without dispersion is shown for

reference, where it is apparent that the approximate first

order form is much closer to the solution of the second

order equation.

Another view of the relative agreement between the

second order and the approximate first order equation

may be obtained by examining the dependence of the
Fig. 5. Comparison of concentration spatial gradients obtained from

order equation.
gradient dy=dx upon the concentration of the key com-

ponent y including reference to the dependence in the

absence of dispersion. The dependence of the spatial

gradient upon y for square root kinetics is shown in Fig.

5 for a Peclet group of 1. The solution to the second

order equation and the approximate first order form

converge in the vicinity of equilibrium, but it is apparent

that agreement is fairly close throughout the range of

concentration with agreement much better than that

between the second order equation and the equation

without dispersion.
the first order approximation and the solution to the second
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At the expense of some loss in accuracy, the first order

form may be used to give initial conditions at the actual

reactor exit for the second order equation even if the

linear requirement is not satisfied. Errors generated when

initial conditions at the actual reactor exit are set in the

non-linear region with the numerical solution continued

by the second order Eq. (16), will be smaller than errors

obtained when a first order equation only is used. One

reason for using a first order form alone is that possible

difficulties of stability given by the second order equation

will not usually be experienced, although some assess-

ment of the first order approximation should be made in

particular circumstances, since the accuracy suggested by

Figs. 4 and 5 may not be general.
Fig. 6. Temperature distribution for non-isothermal reactor

and square root kinetics.

Fig. 7. Concentration distribution for non-isothermal reactor

and square root kinetics.
6. An example of a steady-state non-isothermal reaction

For reactors other than isothermal the associated

thermal balance will normally be formulated. Thus if

the reaction is endothermic without change in the

number of moles the mass balance is given by Eq. (16)

with the boundary conditions given by Eqs. (10) and

(11). The reactor may be heated when the temperature

condition at the reactor outlet will depend upon heat

transfer into the reactor from a heat source, and

therefore equations for the heat transfer source as well

as the thermal balance for the reactor are required to

complete the system of equations. However to avoid

additional complexities that are peripheral to the cen-

tral purpose of the paper we have chosen simply to

specify the temperature along the reactor with an iso-

thermal virtual reactor extension at the reactor exit

temperature Te. The temperature Te is suitable for the

required conversion.

In this example we consider the reaction of half order

kinetics with Arrhenius temperature dependence as fol-

lows,

f ðyÞ ¼ k expð�E=GT Þðy1=2 � y1=2eq Þ ð39Þ

with yeq a function of the local temperature. The tem-

perature distribution has been chosen to be 500 K at the

reactor entrance rising to 700 K at the reactor exit with

the virtual extension isothermal at the reactor exit tem-

perature as shown in Fig. 6. Such a temperature distri-

bution might arise from the application of external heat

transfer combined with an endothermic heat of reaction.

The concentration distribution arising from this

temperature distribution is shown in Fig. 7 for the fol-

lowing parameter values: the pre-exponential factor

k ¼ 5000 moles/m3 s, the activation energy E ¼ 60 kJ,

the Peclet group¼ 1, the particle diameter¼ 10 mm, the

velocity¼ 0.1 m/s, and the equilibrium composition

yeq ¼ 0:0000079 expð5000=T Þ. As in the earlier examples
the concentration distribution is shown for a long

reactor; the concentration distribution in shorter reac-

tors will show a jump in concentration similar to that

demonstrated in Fig. 3. The fall in concentration at the

reactor entrance demonstrated in Figs. 2 and 3 is not

evident in Fig. 7 because of the low rate of reaction at

the entrance temperature.

There are significant differences between the con-

centration distribution shown in Fig. 7 and the isother-

mal distributions illustrated in Figs. 2 and 3. The rate of

fall in concentration at the reactor entrance is low be-

cause of the effect of the low temperature upon the rate

of reaction. As the temperature rises the rate of reaction

increases causing a sharp fall in concentration, with the

rate of fall of concentration declining with concentration

as the distance from the reactor entrance increases.
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7. Multiple reactions

In many processes of industrial significance two or

more reactions take place simultaneously. The essential

features of the analysis may be adapted for the occur-

rence of multiple reactions. The material balances for a

system of m reactions are given by,

d

dx
ðUxcÞ

dp
Pe

dyi
dx

��
� yi

��
�
Xm
j¼1

mijrj ¼ 0;

i ¼ 1; 2; . . . ; n ð40Þ

with the equation corresponding to (9) as

d

dx
Uxcð Þ þ

Xn
i¼1

Xm
j¼1

mijrj ¼ 0 ð41Þ

The stoichiometric coefficient mij for component i in

reaction j, is taken as positive for reactants and nega-

tive for products. Each of the m reactions is thermody-

namically consistent. We may calculate the equilibrium

composition at the chosen exit temperature, or calcu-

late the equilibrium temperature and composition if

the reactor is adiabatic, for example. The boundary

conditions are Eqs. (10) and (11) written for each com-

ponent.

The form of Eq. (40) depends upon the kinetic

scheme with differences for systems of parallel reactions,

reaction schemes with some consecutive reactions,

and reaction schemes with elements of redundancy

whereby the same products are produced by different

reaction paths. If the first m components may be selected

as the key components for the m reactions, Eq. (40)

may be transformed into two equations by row opera-

tions,

d

dx
ðUxcÞ

dp
Pe

dyi
dx

��
� yi

��
�
Xm
j¼1

mijrj ¼ 0;

i ¼ 1; 2; . . . ;m ð42Þ

d

dx
ðUxcÞ

dp
Pe

dyti
dx

��
� yti

��
¼ 0; i ¼ mþ 1; . . . ; n ð43Þ

where yti represents the variable yi after row transfor-

mation. Eq. (42) may be rearranged in the neighbour-

hood of equilibrium to give,

dp
Pe

d2yi
dx2

� dyi
dx

�
Pm

j¼1 mijrj
Uxc

¼ 0; i ¼ 1; 2; . . . ;m ð44Þ

and on defining,

Xm
j¼1

mijrj ¼ fiðyiÞ ¼ fiðyieqÞ þ ðyi � yieqÞ
dfi
dyi

� �
yi¼yieq

þOðyi � yieqÞ2 ð45Þ
then

dfi
dyi

� �
yi¼yieq

¼ gi ¼
f ðyiÞ

ðyi � yieqÞ
þOðyi � yieqÞ;

i ¼ 1; 2; . . . ;m ð46Þ

The set of non-linear equation (42) is transformed into

the set (47) that holds within the linear neighbourhood

of equilibrium,

dp
Pe

d2wi

dx2
� dwi

dx
� kiwi

Uxc
¼ 0;

ki ¼
Pe
2dp

1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4gidp

UxcPe

� �s !

i ¼ 1; 2; . . . ;m ð47Þ

where wi ¼ yi � yieq.
Within the linear neighbourhood of equilibrium the

solution provides the relationship between the depen-

dent variables and the associated spatial derivatives,

dyi
dx

¼ kiðyi � yieqÞ; i ¼ 1; 2; . . . ;m ð48Þ

This set of equations represents the initial conditions

for the set of non-linear equation (42) that are

applied within the neighbourhood. The initial value

of the first key component is chosen within the linear

region of equilibrium. The corresponding values of

the second and subsequent components may be obtained

from the kinetic rates within the linear region accord-

ing to,

yi � yieq ¼
ki
k1

y1
�

� y1eq
�
; i ¼ 2; 3; . . . ;m ð49Þ

By integration of Eq. (43), the material balances for the

non-key components are,

cDx
dyti
dx

�
� Uxcyti

�
¼ Ai; i ¼ mþ 1; . . . ; n ð50Þ

The initial values of the non-key components are ob-

tained from the initial values of the key components and

the stoichiometry of the reactions.

The solution is obtained by numerical integration of

the sets (42) and (43) from the initial conditions incor-

porating Eq. (6) within the numerical scheme. The

integration is continued until the condition at the reac-

tor inlet is attained.

That the choice of initial conditions lies within

the linear region of equilibrium may be ascertained

by examining the constancy of the exponents accord-

ing to the following expression with fiðyiÞ given by

Eq. (45),

ki ¼
Pe
2dp

1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4fiðyiÞdp

ðyi � yieqÞUxcPe

� �s !
ð51Þ
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The initial condition for temperature is simply to set the

temperature at the exit temperature of the bed so that

the virtual extension of the reactor is isothermal. The

material balance conditions set at the reactor entrance

are used to calculate the equilibrium conditions at the

reactor exit temperature, a problem that requires the

solution of simultaneous non-linear equations to give

the equilibrium concentrations of the key components.

From the examples and the discussion it is apparent

that the equations are appropriately formulated to

include the ramifications of non-isothermality, and

for either adiabatic conditions or single-dimensional

heat transfer conditions, the method of transforming

boundary conditions to initial conditions is equally

effective. When the equations for mass and energy con-

servation are expressed in more than one-dimension, the

steady-state transformation of boundary to initial con-

ditions is equally valid, and because the initial condi-

tions are set in the approach to equilibrium where the

dimensionality is reduced to one, the method of appli-

cation is straightforward.

The peculiar difficulty of the theory of the fixed-bed

reactor given the differential equations, has been the

formulation of boundary conditions in a manner that is

consistent with the experimentally-observed absence of

mixing against the direction of flow when dispersion is

convection-dominated. The circumstances suggest either

that the dispersion process is first order, or that the

dispersion process is defined by initial conditions rather

than boundary conditions. By invoking thermodynamic

as well as kinetic considerations, we have shown that the

latter alternative when formulated as shown in this pa-

per, has achieved the desired consistency of experiment

and theory in the description of chemically reacting

systems in fixed-bed reactors.
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